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UK 
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Abstract. We consider a system described by the hamiltonian 
N 

Jy = - J  P,j - Q i ( 0  
(1 .1 )  I =  1 

where the first term corresponds to the Schradinger spin S exchange model and the second 
term represents an arbitrary single-ion contribution (characterized by the set of parameters 
5) .  Terms in the free energy through (J/k,T)’ have been obtained for the face-centred cubic, 
body-centred cubic, simple cubic, plane triangular and plane square lattices : explicit results 
for the face-centred cubic lattice are given in an appendix. 

1. Introduction 

Consider a system of N spin S particles on a lattice interacting via the hamiltonian 

3f = 3fO+Xl (1.1) 

where 

and 

Here Qi(O denotes any single-particle operator acting on spin i ; < is a set ofcharacteristic 
parameters for Q i .  J is the magnitude of an exchange interaction between the pair of 
nearest neighbours ( i ,  j ) .  Pij  is the Schrodinger exchange operator (Schrodinger 1941) 
which has the property that it permutes the spin states ofthe two spins i and j .  In general, 
Pij is a polynomial of degree 2s in (Si. Si). When S = 4, Pij becomes identical with the 
usual Heisenberg operator. 

For the case Qi(H)  = mHS,,  and S = 4, H being a z-directed magnetic field, Baker 
et a1 (1967a, 1970) have computed the first eight terms in the high temperature expansion 
of the free energy for arbitrary If. On the other hand, Chen and Joseph (1972) have 
calculated the first seven terms in the high temperature expansion of the zero field free 
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energy and susceptibility for arbitrary S. The purpose of the present paper is to develop 
the high temperature theory for the case of general S and for arbitrary functions Qi(T). 
The first seven terms of the free energy have been obtained for the face-centred cubic, 
body-centred cubic, simple cubic, plane triangular and plane square lattices ; explicit 
results for the face-centred cubic lattice are given in an appendix. 

2. Theory 

The free energy F of the system is given by 

F ( ( ,  T )  = -k,Tln Trexp[-P(X;+Afl)] (2.1) 
where k ,  is the Boltzmann constant, T the thermodynamic temperature and 
Since X,, and Xl commute, we may expand F in the form 

= l/k,T. 

= lnTre-oJPo+ln 

where K = J/k,T and 

(2 .3 )  

We choose to evaluate these traces in the basis of eigenstates of Q i ,  that is, in the 
basis (M,M, . .  . M , )  defined by 

Qi(T)IMlMZ * * * M,) = d M i ;  T)IM1M2 . . . M,), i =  1,2 , . . . ,  N .  (2.4) 

Here q(Mi; 5 )  denotes an eigenvalue of Qi(<) and the M i  each have 2S+ 1 possible 
values. 

At this point it is convenient to define the set of functions G I  by 

GI --= g,/(g1)' (2.6) 
where the summation is over the 2S+ 1 possible values of M ,  and I is a positive integer. 

The permutation operators Pij and their products form a symmetric group of order 
N ,  S , .  If the permutations of N integers are represented by the cyclic notation (Little- 
wood 1940), those elements of S ,  with the same cycle structure form a class so that 
each partition of N defines a class of S , .  This class is denoted by the symbol 
[la12a2 . , . NaN], E;"= la, = N, or more concisely by k. 

Now, we may write the quantity 8 in the form 
X 

9 = c Pij  = 1 pt (2.7) 
( i , i )  t = l  

where x is the number of nearest-neighbour pairs and p t  denotes an element in the class 
[lN-,2]. We then have that 

8" = 2 . . . 2 p,, . . . pr, = c p r  
r , = 1  1 , = 1  r 

where pr is some element of S ,  and the r summation runs over x" terms. 
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Consider now a cycle of length I ,  denoted ( i , i 2  . . . i , ) .  When we operate with this on 
the substate IMi lMi , ,  , . M i , )  we find that 

( i 1 i 2 . .  . i , ) ~ M i 1 M i 2 . .  . M i l )  = l M i z . .  . M i l M i , )  (2.9) 

by the definition of this operator. Hence we have that 

(2.10) 

Consequently using the fact that Tr e-BJp0 = (gl)N, together with equation (2.10), and 
noting that p ,  has the cycle structure [1"12"2.. . N a N ]  we have that 

(2.1 1) 

since la, = N and G, = 1 by definition. Here G(') denotes a function characteristic 
of the class k which is characterized by the partition [1"'2"'. . . N a N ] .  It then follows 
from equation (2.11) that ( p , )  is determined solely by its cycle structure so that ( p , )  
is the same for all p ,  in the same class. 

Upon combining equations (2.8) and (2.1 1) we have that 

(2.12) 
r k 

where the k summation runs over all the classes of S ,  and an,k is just the number of 
elements which belong to  the dass k among the xn elements of p , .  

The quantities an,k in equation (2.12) can be expressed in terms of the irreducible 
representations of B in the following way. Let 9(') denote the vth irreducible representa- 
tion of 9. It then follows from equation (2.8) that 

(2.13) 

where &) is the character of the kth class in the vth irreducible representation (Littlewood 
1940). Using the orthogonality of characters, ie, 

we get from equation (2.13) the result 

- hk 1 xp'* Tr(@V))". (2.14) 

Here h, is the number of elements of the class k, h = N !  is the total number of elements 
of S ,  and the v summation is over all irreducible representations of S , .  Equation (2.14) 
is the basic result which we shall use in our calculations. 

h v  
'n.k - 
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Combining equations (2.2) and (2.12) we have that 

(2.15) 

In the thermodynamic limit we have 

an,k = Nbn,k +o(N2). (2.1 6 )  

On making the moment to cumulant transformation, terms of O(N2) cancel exactly 
so that we may write the free energy in the final form 

O0 K" O0 K" 
N n = l  n *  k n = l  n. 

-- - P F  - In g, + 1 E bn,kG(k) = In g, + 1 F,,(o. (2.17) 

Since all of the pr in equation (2.7) are in the class [1N-22] we then see that the general 
structure of the term proportional to  K" in equation (2.17) is such that for n = 1 we have 
only a term G 2 ,  while for n = 2 we have terms proportional to unity, (G2)2, and G 3  
and for n = 3 terms in G , ,  G , ,  G 2 G ,  and (G2)3, and so on. 

3. The calculation 

For an explicit evaluation of the quantities b,,k which enter into equation (2.17) we have 
made use of the finite cluster method of Domb (1960)and Rushbrooke (1964) as discussed 
in detail by Baker et al(1967a) and Chen and Joseph (1972). For a cluster of 1 lines and 
m vertices the quantity an,k of equation (2.15) was evaluated by means of equation (2.14). 
In this case 9 will be the sum of pf over the I bonds of the cluster while the order of 
the symmetric group is m. The irreducible representations of PI,, P23, .  . . , P,- l m  

for S, can be constructed from those of S,- 1 ,  S,-  by the method of Yamanouchi 
(1937). By multiplying these matrices we can get the irreducible representations of 
any Pij appearing in the cluster. 

The explicit calculations were performed on a high speed computer (CDC 6600). 
For m = 2,3,4,5,6,7,8,9,10 the largest sizes of the irreducible representation matrices 
of S, are 1,2,3,6, 16,35,90,216,768, respectively (Littlewood 1940). We were forced 
to stop our calculations at  7 line clusters, that is, we could only compute terms through 
K 7  in equation (2.17) because the matrices for 9 vertex clusters were too large for the 
computer to handle. A general listing of all necessary graphs, lattice constants, and the 
so called T matrix necessary for the computation can be found in the monumental 
work of Baker et a1 (1967b). The results of our calculation for the quantities 
Fn = Ck bn,kG(k), n = 1-7 ,  for the face-centred cubic lattice are given in the appendix. 
These quantities have also been computed for the body-centred cubic, simple cubic, 
plane triangular and plane square lattices and can be obtained from the authors on 
request. The functions Gl are given by equations (2.5) and (2.6). It is only through these 
terms that the function Qi enters. 

Since in a calculation of this kind numerical errors can enter at  any stage, it is 
essential to  have a careful checking procedure. The following four checks were made. 
First, it follows directly from equation (2.12) that for a I line cluster 

1 an,k = I". (3.1) 
k 

This provides a simple and direct check. A second direct check was to confirm that a 
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cluster of I lines did not contribute to  the term K" when n < 1. Our final two checks 
were to reduce our results to  the independent results of Chen and Joseph (1972) and 
Baker et  a1 (1970). In the former case we set Qi = mHSiL and computed the zero field 
free energy and susceptibility by simply letting 

and 

and collecting like powers of Y( = 2 S  + 1) where k = [1212"2 . . . I " ' .  . .]. For the latter 
comparison we set S = $ and Qi = 2mHSi,. I t  then follows from equations (2.5) and 
(2.6) that 

where y = mH/k,Tand E [ x ]  is the largest integer not exceeding x. In this case G'k' is a 
finite polynomial in (tanh y)'. By grouping like powers of (tanh y)' the free energy can 
be written in the form 

* K n  
= ln(2 cosh y)+  E - Cn,j(tanh y)''. -F(H, T) 

Nk,T a = l  n !  j = o  
(3.5) 

The magnetization M was obtained by taking a derivative with respect to  y and the 
resultant series was then inverted to  the form 

tanh y = M C o ( K ) + M 3 C , ( K ) +  . . . (3.6) 

so as to  be able to  compare our results directly with those presented by Baker er a1 
(1970). Needless to say our results are consistent with all four checking procedures. 

4. Discussion 

Since our final results do  not specify an explicit form for the single-ion function Qi(t), 
various kinds of high temperature series can be derived from the free energy. In view of 
the recent interest in the critical point behaviour of multicomponent systems (Griffiths 
and Wheeler 1970) and the universality hypothesis (Griffiths 1970) it seems desirable to  
analyse our series for a 'multi-field' system to see what effect variation of certain para- 
meters might have on the properties of the system. A simple example is a system with 
Q,(H,  D )  = mHS, -OS?: where D is the magnitude of a single-ion anisotropy. The 
properties of this system in the limits D/k,T -, f cc have been studied in some detail 
by Kim and Joseph (1973a, b). When S = 1 a simple mean field treatment of this case 
shows that the system possesses a tricritical point in qualitative agreement with the spin 
one king interaction with quadratic terms considered by Blume et a1 (1971). Numerical 
analysis of our series is now underway to  study this situation in more detail. 
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Appendix. Face-centred cubic lattice 

F, = 6G2 

F2 = 6 +  132G3 - 138G: 

F3 = 36G2 + 5 5326, - 13 320G2G3 + 7 7526; 

F4 = -48+3252G3-2952G:+351 000G5-975 312G2G4-421 920G: 

+ 1 766 736GiG3 - 720 7566; 

F, = - 744G2+ 351 120G4- 740 880G2G3 + 30 107 520G6 + 391 800G: 

- 95 454 720G2G, - 76 387 680G,G4 + 186 333 840G:G4 

+ 161 395 200G2G: - 300 739 680GiG3 +94 744 2246; 

F6 = 2 700-48 672G3+57 132G:+45 874 7766, - 113 823 984G2G4 

-47 774 23263 + 186 401 880G:G3 + 3 267 603 360G7 -4 116 168 720G: 

- 11 672 959 680G2G6 - 8 896 664 160G3G5 - 70 723 440G; 

+ 5 732 579 520Gi + 39 705 197 760G2G3G4+24 765 665 760G:G5 

-41 557 487 040GiG4- 54 041 562 720G;G: + 62 998 179 840G;G3 

- 16 184 350 080G; 

F7 = 123 360G2 + 352 8WG4 + 5 972 400G2G3 + 7 072 108 68OG6 - 5 349 12OGi 

-20348 137 152G2G,-15692814480G3G4+429825 281 760GB 

+ 36 218 988 288G:G4+ 30 607 129 224G2G: - 1 111 793 558 400G4G5 

- 1 260 893 632 320G3G6 - 1 710 559 408 320G2G7 - 53 867 000 880GiG3 

+ 3 943 181 723 MOGiG, + 16 007 110 560G; + 6 022790 605 440 G2G3G, 

+ 2 788 308 41 1 840G2G: + 2 414 839 452 480G:G4 

- 6 993 526 901 760GiG5 - 16 842 341 154 240GiG3G4 

-4 867 172 755 200G2G:+ 18 710 029 991 520GiG: 

+ 10 782 927 912 960G:G4- 15 716 035 601 280GiG3 

+3410421 148800G:. 
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