High temperature free energy of the Schrodinger model of ferromagnetism for arbitrary singleion contributions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1974 J. Phys. A: Math. Nucl. Gen. 7301
(http://iopscience.iop.org/0301-0015/7/2/015)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.87
The article was downloaded on 02/06/2010 at 04:56

Please note that terms and conditions apply.

High temperature free energy of the Schrödinger model of ferromagnetism for arbitrary single-ion contributions

D Kim \dagger and R I Joseph \dagger
Department of Physics, King's College, University of London, Strand, London WC2R 2LS, UK

Received 11 June 1973

Abstract

We consider a system described by the hamiltonian $$
\mathscr{H}=-J \sum_{\langle i, j\rangle} P_{i j}-\sum_{i=1}^{N} Q_{i}(\xi)
$$ where the first term corresponds to the Schrödinger spin S exchange model and the second term represents an arbitrary single-ion contribution (characterized by the set of parameters ξ). Terms in the free energy through $\left(J / k_{\mathrm{B}} T\right)^{7}$ have been obtained for the face-centred cubic, body-centred cubic, simple cubic, plane triangular and plane square lattices; explicit results for the face-centred cubic lattice are given in an appendix.

1. Introduction

Consider a system of N spin S particles on a lattice interacting via the hamiltonian

$$
\begin{equation*}
\mathscr{H}=\mathscr{H}_{0}+\mathscr{H}_{1} \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathscr{H}_{0}=-\sum_{i=1}^{N} Q_{i}(\xi) \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathscr{H}_{1}=-J \sum_{\langle i, j\rangle} P_{i j} \equiv-J \mathscr{P} . \tag{1.3}
\end{equation*}
$$

Here $Q_{i}(\xi)$ denotes any single-particle operator acting on spin $i ; \xi$ is a set of characteristic parameters for $Q_{i} . J$ is the magnitude of an exchange interaction between the pair of nearest neighbours $\langle i, j\rangle . P_{i j}$ is the Schrödinger exchange operator (Schrödinger 1941) which has the property that it permutes the spin states of the two spins i and j. In general, $P_{i j}$ is a polynomial of degree $2 S$ in $\left(\boldsymbol{S}_{i}, S_{j}\right)$. When $S=\frac{1}{2}, P_{i j}$ becomes identical with the usual Heisenberg operator.

For the case $Q_{i}(H)=m H S_{i z}$ and $S=\frac{1}{2}, H$ being a z-directed magnetic field, Baker et al (1967a, 1970) have computed the first eight terms in the high temperature expansion of the free energy for arbitrary H. On the other hand, Chen and Joseph (1972) have calculated the first seven terms in the high temperature expansion of the zero field free

[^0]energy and susceptibility for arbitrary S. The purpose of the present paper is to develop the high temperature theory for the case of general S and for arbitrary functions $Q_{i}(\xi)$. The first seven terms of the free energy have been obtained for the face-centred cubic, body-centred cubic, simple cubic, plane triangular and plane square lattices; explicit results for the face-centred cubic lattice are given in an appendix.

2. Theory

The free energy F of the system is given by

$$
\begin{equation*}
F(\xi, T)=-k_{\mathrm{B}} T \ln \operatorname{Tr} \exp \left[-\beta\left(\mathscr{H}_{0}+\mathscr{H}_{1}\right)\right] \tag{2.1}
\end{equation*}
$$

where k_{B} is the Boltzmann constant, T the thermodynamic temperature and $\beta=1 / k_{\mathrm{B}} T$. Since \mathscr{H}_{0} and \mathscr{H}_{1} commute, we may expand F in the form

$$
\begin{equation*}
-\beta F=\ln \operatorname{Tr}\left(\sum_{n=0}^{\infty} \frac{K^{n}}{n!} \mathscr{P}^{n} \mathrm{e}^{-\beta \mathscr{X}_{0}}\right)=\ln \operatorname{Tr} \mathrm{e}^{-\beta \mathscr{X}_{0}}+\ln \left(1+\sum_{n=1}^{\infty} \frac{K^{n}}{n!}\left\langle\mathscr{P}^{n}\right\rangle\right) \tag{2.2}
\end{equation*}
$$

where $K=J / k_{\mathrm{B}} T$ and

$$
\begin{equation*}
\langle\mathcal{O}\rangle \equiv \frac{\operatorname{Tr} \mathcal{C} \mathrm{e}^{-\beta \mathscr{H}_{0}}}{\operatorname{Tr} \mathrm{e}^{-\beta \mathscr{H}_{0}}} . \tag{2.3}
\end{equation*}
$$

We choose to evaluate these traces in the basis of eigenstates of Q_{i}, that is, in the basis $\left|M_{1} M_{2} \ldots M_{N}\right\rangle$ defined by
$Q_{i}(\xi)\left|M_{1} M_{2} \ldots M_{N}\right\rangle=q\left(M_{i} ; \xi\right)\left|M_{1} M_{2} \ldots M_{N}\right\rangle, \quad i=1,2, \ldots, N$.
Here $q\left(M_{i} ; \xi\right)$ denotes an eigenvalue of $Q_{i}(\xi)$ and the M_{i} each have $2 S+1$ possible values.

At this point it is convenient to define the set of functions G_{l} by

$$
\begin{align*}
& g_{l} \equiv \sum_{M} \mathrm{e}^{\beta l q(M ; \xi)}, \tag{2.5}\\
& G_{l} \equiv g_{l} /\left(g_{1}\right)^{l} \tag{2.6}
\end{align*}
$$

where the summation is over the $2 S+1$ possible values of M, and l is a positive integer.
The permutation operators $P_{i j}$ and their products form a symmetric group of order N, S_{N}. If the permutations of N integers are represented by the cyclic notation (Littlewood 1940), those elements of S_{N} with the same cycle structure form a class so that each partition of N defines a class of S_{N}. This class is denoted by the symbol $\left[1^{\alpha_{1}} 2^{\alpha_{2}} \ldots N^{\alpha_{N}}\right], \Sigma_{l=1}^{N} l \alpha_{l}=N$, or more concisely by k.

Now, we may write the quantity \mathscr{P} in the form

$$
\begin{equation*}
\mathscr{P}=\sum_{\langle i, j\rangle} P_{i j}=\sum_{t=1}^{x} p_{t} \tag{2.7}
\end{equation*}
$$

where x is the number of nearest-neighbour pairs and p_{t} denotes an element in the class $\left[1^{N-2} 2\right]$. We then have that

$$
\begin{equation*}
\mathscr{P}^{n}=\sum_{t_{1}=1}^{x} \ldots \sum_{t_{n}=1}^{x} p_{t_{1}} \ldots p_{t_{n}}=\sum_{r} p_{r} \tag{2.8}
\end{equation*}
$$

where p_{r} is some element of S_{N} and the r summation runs over x^{n} terms.

Consider now a cycle of length l, denoted $\left(i_{1} i_{2} \ldots i_{l}\right)$. When we operate with this on the substate $\left|M_{i_{1}} M_{i_{2}} \ldots M_{i_{1}}\right\rangle$ we find that

$$
\begin{equation*}
\left(i_{1} i_{2} \ldots i_{l}\right)\left|M_{i_{1}} M_{i_{2}} \ldots M_{i_{1}}\right\rangle=\left|M_{i_{2}} \ldots M_{i_{1}} M_{i_{1}}\right\rangle \tag{2.9}
\end{equation*}
$$

by the definition of this operator. Hence we have that

$$
\begin{align*}
\sum_{M_{11}} \ldots \sum_{M_{i_{i}}}\langle & \left.M_{i_{1}} \ldots M_{i_{l}}\left|\left(i_{1} \ldots i_{l}\right) \exp \left(\beta \sum_{r=1}^{l} Q_{i_{r}}(\xi)\right)\right| M_{i_{1}} \ldots M_{i_{1}}\right\rangle \\
& =\sum_{M_{i_{1}}} \ldots \sum_{M_{i_{i}}}\left\langle M_{i_{1}} \ldots M_{i_{1}} \mid M_{i_{2}} \ldots M_{i_{l}} M_{i_{1}}\right\rangle \exp \left(\beta \sum_{r=1}^{l} q\left(M_{i_{r}} ; \xi\right)\right) \\
& =\sum_{M} \mathrm{e}^{\beta l q(M ; \xi)}=g_{l} . \tag{2.10}
\end{align*}
$$

Consequently using the fact that $\operatorname{Tr} \mathrm{e}^{-\beta H_{0}}=\left(g_{1}\right)^{N}$, together with equation (2.10), and noting that p_{r} has the cycle structure $\left[1^{\alpha_{1}} 2^{\alpha_{2}} \ldots N^{\alpha_{N}}\right]$ we have that

$$
\begin{equation*}
\left\langle p_{r}\right\rangle=\frac{\left(g_{1}\right)^{\alpha_{1}}\left(g_{2}\right)^{\alpha_{2}} \ldots\left(g_{N}\right)^{\alpha_{N}}}{\left(g_{1}\right)^{N}}=\left(G_{2}\right)^{\alpha_{2}} \ldots\left(G_{N}\right)^{\alpha_{N}} \equiv G^{(k)} \tag{2.11}
\end{equation*}
$$

since $\sum_{l=1}^{N} l \alpha_{l}=N$ and $G_{1}=1$ by definition. Here $G^{(k)}$ denotes a function characteristic of the class k which is characterized by the partition [$1^{\alpha_{1}} 2^{\alpha_{2}} \ldots N^{\alpha_{N}}$]. It then follows from equation (2.11) that $\left\langle p_{r}\right\rangle$ is determined solely by its cycle structure so that $\left\langle p_{r}\right\rangle$ is the same for all p_{r} in the same class.

Upon combining equations (2.8) and (2.11) we have that

$$
\begin{equation*}
\left\langle\mathscr{P}{ }^{n}\right\rangle=\sum_{r}\left\langle p_{r}\right\rangle=\sum_{k} a_{n, k} G^{(k)} \tag{2.12}
\end{equation*}
$$

where the k summation runs over all the classes of S_{N} and $a_{n, k}$ is just the number of elements which belong to the class k among the x^{n} elements of p_{r}.

The quantities $a_{n, k}$ in equation (2.12) can be expressed in terms of the irreducible representations of \mathscr{P} in the following way. Let $\mathscr{P}^{(v)}$ denote the v th irreducible representation of \mathscr{P}. It then follows from equation (2.8) that

$$
\begin{equation*}
\operatorname{Tr}\left(\mathscr{P}^{(v)}\right)^{n}=\operatorname{Tr} \sum_{r} p_{r}^{(v)}=\sum_{k} a_{n k k} \gamma_{k}^{(v)} \tag{2.13}
\end{equation*}
$$

where $\chi_{k}^{(v)}$ is the character of the k th class in the v th irreducible representation (Littlewood 1940). Using the orthogonality of characters, ie,

$$
\sum_{v} \frac{h_{k}}{h} \chi_{k}^{(v) *} \chi_{k^{\prime}}^{(v)}=\delta_{k k^{\prime}}
$$

we get from equation (2.13) the result

$$
\begin{equation*}
a_{n, k}=\frac{h_{k}}{h} \sum_{v} \chi_{k}^{(v) *} \operatorname{Tr}\left(\mathscr{P}^{(v)}\right)^{n} . \tag{2.14}
\end{equation*}
$$

Here h_{k} is the number of elements of the class $k, h=N!$ is the total number of elements of S_{N} and the v summation is over all irreducible representations of S_{N}. Equation (2.14) is the basic result which we shall use in our calculations.

Combining equations (2.2) and (2.12) we have that

$$
\begin{equation*}
-\beta F=N \ln g_{1}+\ln \left(1+\sum_{n=1}^{\infty} \frac{K^{n}}{n!} \sum_{k} a_{n, k} G^{(k)}\right) . \tag{2.15}
\end{equation*}
$$

In the thermodynamic limit we have

$$
\begin{equation*}
a_{n, k}=N b_{n, k}+\mathrm{O}\left(N^{2}\right) \tag{2.16}
\end{equation*}
$$

On making the moment to cumulant transformation, terms of $\mathrm{O}\left(N^{2}\right)$ cancel exactly so that we may write the free energy in the final form

$$
\begin{equation*}
\frac{-\beta F}{N}=\ln g_{1}+\sum_{n=1}^{\infty} \frac{K^{n}}{n!} \sum_{k} b_{n, k} G^{(k)}=\ln g_{1}+\sum_{n=1}^{\infty} \frac{K^{n}}{n!} F_{n}(\xi) \tag{2.17}
\end{equation*}
$$

Since all of the p_{t} in equation (2.7) are in the class [$\left.1^{N-2} 2\right]$ we then see that the general structure of the term proportional to K^{n} in equation (2.17) is such that for $n=1$ we have only a term G_{2}, while for $n=2$ we have terms proportional to unity, $\left(G_{2}\right)^{2}$, and G_{3} and for $n=3$ terms in $G_{2}, G_{4}, G_{2} G_{3}$ and $\left(G_{2}\right)^{3}$, and so on.

3. The calculation

For an explicit evaluation of the quantities $b_{n, k}$ which enter into equation (2.17) we have made use of the finite cluster method of Domb (1960) and Rushbrooke (1964) as discussed in detail by Baker et al (1967a) and Chen and Joseph (1972). For a cluster of l lines and m vertices the quantity $a_{n, k}$ of equation (2.15) was evaluated by means of equation (2.14). In this case \mathscr{P} will be the sum of p_{t} over the l bonds of the cluster while the order of the symmetric group is m. The irreducible representations of $P_{12}, P_{23}, \ldots, P_{m-1 m}$ for S_{m} can be constructed from those of S_{m-1}, S_{m-2} by the method of Yamanouchi (1937). By multiplying these matrices we can get the irreducible representations of any $P_{i j}$ appearing in the cluster.

The explicit calculations were performed on a high speed computer (CDC 6600). For $m=2,3,4,5,6,7,8,9,10$ the largest sizes of the irreducible representation matrices of S_{m} are $1,2,3,6,16,35,90,216,768$, respectively (Littlewood 1940). We were forced to stop our calculations at 7 line clusters, that is, we could only compute terms through K^{7} in equation (2.17) because the matrices for 9 vertex clusters were too large for the computer to handle. A general listing of all necessary graphs, lattice constants, and the so called T matrix necessary for the computation can be found in the monumental work of Baker et al (1967b). The results of our calculation for the quantities $F_{n}=\Sigma_{k} b_{n, k} G^{(k)}, n=1-7$, for the face-centred cubic lattice are given in the appendix. These quantities have also been computed for the body-centred cubic, simple cubic, plane triangular and plane square lattices and can be obtained from the authors on request. The functions G_{l} are given by equations (2.5) and (2.6). It is only through these terms that the function Q_{i} enters.

Since in a calculation of this kind numerical errors can enter at any stage, it is essential to have a careful checking procedure. The following four checks were made. First, it follows directly from equation (2.12) that for a l line cluster

$$
\begin{equation*}
\sum_{k} a_{n, k}=l^{n} . \tag{3.1}
\end{equation*}
$$

This provides a simple and direct check. A second direct check was to confirm that a
cluster of l lines did not contribute to the term K^{n} when $n<l$. Our final two checks were to reduce our results to the independent results of Chen and Joseph (1972) and Baker et al (1970). In the former case we set $Q_{i}=m H S_{i z}$ and computed the zero field free energy and susceptibility by simply letting

$$
\begin{equation*}
G^{(k)}=Y^{-\Sigma_{l \geqslant 2}^{l l-1) \alpha_{1}}}, \quad \text { for the free energy } ; \tag{3.2}
\end{equation*}
$$

and
$G^{(k)}=\frac{1}{3} S(S+1) Y^{-\Sigma_{1 \geqslant 2}(l-1) x_{1}}\left(\sum_{l \geqslant 2} l(l-1)\right), \quad$ for the zero field susceptibility;
and collecting like powers of $Y(=2 S+1)$ where $k=\left[1^{\alpha_{1}} 2^{\alpha_{2}} \ldots l^{\alpha_{1}} \ldots\right]$. For the latter comparison we set $S=\frac{1}{2}$ and $Q_{i}=2 m H S_{i z}$. It then follows from equations (2.5) and (2.6) that

$$
\begin{align*}
& g_{l}=2 \cosh l y \\
& G_{l}=\frac{1}{2^{l-1}} \sum_{j=0}^{E\left[\frac{1+l]}{}\right.}\binom{l}{2 j}(\tanh y)^{2 j}, \tag{3.4}
\end{align*}
$$

where $y=m H / k_{\mathrm{B}} T$ and $E[x]$ is the largest integer not exceeding x. In this case $G^{(k)}$ is a finite polynomial in $(\tanh y)^{2}$. By grouping like powers of $(\tanh y)^{2}$ the free energy can be written in the form

$$
\begin{equation*}
\frac{-F(H, T)}{N k_{\mathrm{B}} T}=\ln (2 \cosh y)+\sum_{n=1}^{\infty} \frac{K^{n}}{n!} \sum_{j=0}^{n} C_{n, j}(\tanh y)^{2 j} . \tag{3.5}
\end{equation*}
$$

The magnetization M was obtained by taking a derivative with respect to y and the resultant series was then inverted to the form

$$
\begin{equation*}
\tanh y=M C_{0}(K)+M^{3} C_{1}(K)+\ldots \tag{3.6}
\end{equation*}
$$

so as to be able to compare our results directly with those presented by Baker et al (1970). Needless to say our results are consistent with all four checking procedures.

4. Discussion

Since our final results do not specify an explicit form for the single-ion function $Q_{i}(\xi)$, various kinds of high temperature series can be derived from the free energy. In view of the recent interest in the critical point behaviour of multicomponent systems (Griffiths and Wheeler 1970) and the universality hypothesis (Griffiths 1970) it seems desirable to analyse our series for a 'multi-field' system to see what effect variation of certain parameters might have on the properties of the system. A simple example is a system with $Q_{i}(H, D)=m H S_{i z}-D S_{i z}^{2}$ where D is the magnitude of a single-ion anisotropy. The properties of this system in the limits $D / k_{\mathrm{B}} T \rightarrow \pm \infty$ have been studied in some detail by Kim and Joseph (1973a, b). When $S=1$ a simple mean field treatment of this case shows that the system possesses a tricritical point in qualitative agreement with the spin one Ising interaction with quadratic terms considered by Blume et al (1971). Numerical analysis of our series is now underway to study this situation in more detail.

Acknowledgments

One of us (RIJ) wishes to thank the John Simon Guggenheim Memorial Foundation for the award of a fellowship during which time the present work was done. We wish to thank Dr D S Gaunt and Mr G S Joyce for helpful comments.

Appendix. Face-centred cubic lattice

$$
\begin{aligned}
& F_{1}=6 G_{2} \\
& F_{2}=6+132 G_{3}-138 G_{2}^{2} \\
& F_{3}=36 G_{2}+5532 G_{4}-13320 G_{2} G_{3}+7752 G_{2}^{3} \\
& F_{4}=-48+3252 G_{3}-2952 G_{2}^{2}+351000 G_{5}-975312 G_{2} G_{4}-421920 G_{3}^{2} \\
& +1766736 G_{2}^{2} G_{3}-720756 G_{2}^{4} \\
& F_{5}=-744 G_{2}+351120 G_{4}-740880 G_{2} G_{3}+30107520 G_{6}+391800 G_{2}^{3} \\
& -95454720 G_{2} G_{5}-76387680 G_{3} G_{4}+186333840 G_{2}^{2} G_{4} \\
& +161395200 G_{2} G_{3}^{2}-300739680 G_{2}^{3} G_{3}+94744224 G_{2}^{5} \\
& F_{6}=2700-48672 G_{3}+57132 G_{2}^{2}+45874776 G_{5}-113823984 G_{2} G_{4} \\
& -47774232 G_{3}^{2}+186401880 G_{2}^{2} G_{3}+3267603360 G_{7}-4116168720 G_{4}^{2} \\
& -11672959680 G_{2} G_{6}-8896664160 G_{3} G_{5}-70723440 G_{2}^{4} \\
& +5732579520 G_{3}^{3}+39705197760 G_{2} G_{3} G_{4}+24765665760 G_{2}^{2} G_{5} \\
& -41557487040 G_{2}^{3} G_{4}-54041562720 G_{2}^{2} G_{3}^{2}+62998179840 G_{2}^{4} G_{3} \\
& -16184350080 G_{2}^{6} \\
& F_{7}=123360 G_{2}+352800 G_{4}+5972400 G_{2} G_{3}+7072108680 G_{6}-5349120 G_{2}^{3} \\
& -20348137152 G_{2} G_{5}-15692814480 G_{3} G_{4}+429825281760 G_{8} \\
& +36218988288 G_{2}^{2} G_{4}+30607129224 G_{2} G_{3}^{2}-1111793558400 G_{4} G_{5} \\
& -1260893632320 G_{3} G_{6}-1710559408320 G_{2} G_{7}-53867000880 G_{2}^{3} G_{3} \\
& +3943181723040 G_{2}^{2} G_{6}+16007110560 G_{2}^{5}+6022790605440 G_{2} G_{3} G_{5} \\
& +2788308411840 G_{2} G_{4}^{2}+2414839452480 G_{3}^{2} G_{4} \\
& -6993526901760 G_{2}^{3} G_{5}-16842341154240 G_{2}^{2} G_{3} G_{4} \\
& -4867172755200 G_{2} G_{3}^{3}+18710029991520 G_{2}^{3} G_{3}^{2} \\
& +10782927912960 G_{2}^{4} G_{4}-15716035601280 G_{2}^{5} G_{3} \\
& +3410421148800 G_{2}^{7} \text {. }
\end{aligned}
$$

References

Baker G A Jr, Gilbert H E, Eve J and Rushbrooke G S 1967a Phys. Rev. 164 800-17

- 1967b Brookhaven National Laboratory Report No. 50053 (T-460)

Blume M, Emery V J and Griffiths R B 1971 Phys. Rev. A 4 1071-7
Chen H H and Joseph R I 1972 J. math. Phys. 13 725-39
Domb C 1960 Adv. Phys. 9 149-361
Griffiths R B 1970 Phys. Rev. Lett. 24 1479-82
Griffiths R B and Wheeler J C 1970 Phys. Rev. A 2 1047-64
Kim D and Joseph R I 1973a Phys. Lett. 43A 439-40

- 1973b Phys. Lett. 44A 75-6

Littlewood D E 1940 The Theory of Group Characters (Oxford: Clarendon Press)
Rushbrooke G S 1964 J. math. Phys. 5 1106-16
Schrödinger E 1941 Proc. R. Irish Acad. 47 39-52
Yamanouchi T 1937 Proc. Phys. Math. Soc., Japan 19 436-50

[^0]: + On leave from the Department of Electrical Engineering, The Johns Hopkins University, Baltimore, Maryland.

